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Abstract We used magnetograms acquired with the Helioseismic and Magnetic

Imager (HMI) on board the Solar Dynamics Observatory (SDO) to calculate
and analyze spatial correlation functions and the multi-fractal spectra in solar
active regions (ARs). The analysis was performed for two very different types
of ARs: i) simple bipolar magnetic structures with regular orientation (the
magneto-morphological class A1), and ii) very complex multi-polar ARs (the
magneto-morphological class B3). All ARs were explored at the developed phase
during flareless periods. For correlation functions, the power-law and exponential
approximations were calculated and compared. It was found that the exponential
law holds for the correlation functions of both types of ARs within spatial scales
of 1-36 Mm, while the power law failed to approximate the observed correlation
functions. The property of multi-fractality was found in all ARs, being better
pronounced for the complex B3-class ARs. Our results might imply that pho-
tospheric magnetic fields of an AR is a self-organized system, which, however,
does not exhibit properties of self-organized criticality (SOC), and its fractal
properties are an attribute of more broad (than SOC only) class of non-linear
systems.

Keywords: Active Regions, Magnetic fields; Magnetic fields, Photosphere; Tur-
bulence; Instabilities

1. Introduction

An active region (AR) on the Sun is a large cluster of magnetized plasma em-
bracing a volume from sub-photospheric depths through the photosphere to the
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V. Abramenko and R. Suleymanova

chromosphere and the corona. The magnetic field is a structuring agent that
forms a visible appearance of an AR. The AR evolves amid a turbulent medium,
and therefore, as any turbulent phenomenon, evolves as a non-linear dynamical
dissipative system, possessing properties of self-organization, see, e.g., Biskamp
(1993); Frisch (1995); Kurakin (2011); Aschwanden et al. (2018)).

Bak, Tang, and Wiesenfeld (1987) introduced a new concept of self-organized
criticality (SOC). A self-organized system, when it is in a SOC state, can sponta-
neously transit into a critical state in which a catastrophe of any scale (up to the
scale of the entire system) might occur. To this end, SOC-systems form a subset
of self-organized systems. According to Watkins et al. (2016), one way to detect
the SOC-systems is to analyze their correlation functions. In the SOC state a
system is capable of inducing long-range correlations meaning that fluctuations
at all scales up to the longest ones are possible, resulting in a heavy-tailed power
law correlation functions. On the contrary, a self-organized systems that exhibit
exponential correlation functions are not in the SOC state.

Therefore, an analysis of correlation functions may help us to reveal prop-
erties of self-organization versus SOC properties. We note that the correlation
functions of 2D-structures of solar magnetic fields were not extensively studied.
Except for our old publication (Abramenko et al. (2003)), we found only one
publication for the last two decades, where the 2D correlation function technique
was applied to analyze the spatial correlation of magnetic field fluctuations:
Baumgartner et al. (2022). Here we attempt to fill the gap and to explore the
correlation functions of the radial magnetic field component in ARs using space-
born data. The main aim of the present pilot study is to derive the spatial
correlation function of the magnetic field in an AR, leaving for future the impor-
tant question on the possible changes in this function related to the evolution of
the AR. For our purpose, the best way would be to explore the AR at the time
without lateral circumstances such as emergence, decay, or flare, i.e., during the
flareless interval of the developed phase.

This study is a case study, and the outcome might be better understood if
the analysis involves contrast cases. We thus selected four ARs of extremely
simple and regular magnetic configuration and compared their properties with
those of four ARs of very complex and irregular configuration (Sec. 3). An
accompanying analysis of fractal properties of all ARs are presented in Sec.
4, and our concluding remarks are gathered in Sec. 5.

2. Data

We used magnetograms acquired with the Helioseismic and Magnetic Imager

(HMI) on board the Solar Dynamics Observatory (SDO) Scherrer et al. (2012),
Schou et al. (2012). To retrieve the data, we downloaded Space-weather HMI

Active Region Patches (SHARP, sharp cea 720s series) from the Joint Science

Operations Center (JSOC, http://jsoc.stanford.edu/). The Br, Bp, and Bt mag-
netograms were acquired in the Fe I 6173.3Å spectral line with the spatial
resolution of 1 arcsec. The radial component, Br, was utilized in the present
research.

SOLA: ms4.tex; 11 April 2024; 1:12; p. 2

http://jsoc.stanford.edu/


Correlation Functions of Solar Active Regions

In total, eight ARs were chosen for the study (see Table 1 and Figures 1, 2).
Our criteria for selection can be summarized as follows. Generally, statistical
properties of the photospheric magnetic field (e.g., correlation functions, struc-
ture functions, distribution functions, statistical moments, etc. ) can vary during
the evolution of the AR. The question deserves a separate investigation, and in
the present study, to begin with, we restricted ourselves to the developed phase
of the AR’ evolution. So, all ARs in Table 1 are mature ARs, observed in the
developed phase. A choice of the AR’s position on the solar disc was governed
by two considerations. First, we tried to select the observation day when the
AR is close to the central meridian to mitigate the errors for the projection.
Second, we tried to explore the AR during the first half of the developed phase,
when the destroy process did not start to corrupt the magnetic structure. As
we mentioned above, the decay process analysis was postponed for future. We
managed to comply with these restrictions for all ARs except for the last one, AR
NOAA 12673, which started a fast development being in the Western hemisphere.
A possible influence of flaring on the statistical functions of the magnetic field
is worthy of a special analysis. So, in the present pilot study, we tried to avoid
flaring, and so, all taken magnetograms were recorded during non-flaring periods
and the strongest flare in an AR occurred a day(s) before (negative delay in the
last column of Table 1), or after (positive delay) the selected interval of analysis.

The selection was also guided by the magneto-morphological classification
(MMC) of ARs, suggested in Abramenko, Zhukova, and Kutsenko (2018); Abra-
menko (2021). Following the MMC, four chosen ARs are of the A1-class, which
includes simple bipolar ARs (see Figure 1) complying with the empirical laws
(the Hale polarity law, the Joy’s law, the prevalence of the leading spot). We
refer to them as regular ARs. The remainig four ARs (Figure 2) belong to the
B3-class comprised of the most complex ARs caused, presumably, by emergence
of several inter-twinned flux tubes. To ease the comparison, all selected ARs
had carried a large amount of the total magnetic flux (in excess of 2.7·1022 Mx,
see 4th column in Table 1). Note that the total unsigned magnetic flux of an
AR was calculated as a sum of absolute values of the magnetic flux density Br

in pixels where |Br| >18 Mx cm−2, multiplied by the pixel size. The threshold
magnitude was derived as a standard deviation of Br in a quiet-sun area. As
soon as the flux values are used here for the illustration only, the choice of the
threshold does not affect the results.

The choice of A1- and B3-class ARs allowed us to take into account possible
differences in the sub-photospheric origin of the ARs: A1 class ARs are thought
to be the most compliant with the mean field dynamo theory, where active region
are thought to be formed from the coherent toroidal magnetic field. The B3-class
ARs appear to be strongly affected by the sub-photospheric turbulent convection
and thus most strongly deviate from the mean field dynamo theory predictions
(Abramenko, 2021). It was shown earlier that the magnetic flux from A- and
B-class ARs varies differently over the solar cycle (Abramenko, Suleymanova,
and Zhukova, 2023): while the A-class ARs determine the overall shape of the
cycle profile, the B-class ARs determine the multi-peak structure of the cycle
maximum. During the solar minima predominantly A-class ARs appear. The A-
and B-class ARs show different flaring activity as well: powerful X-class flares
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Table 1. Active regions under study

NOAA MMC Observation date, Flux, AR FI/Max flare

class time (UT) 1022 Mx Location (delay)1

11734 A1 3 May 2013 4.63±0.42 S18 E12 3.90/C3.4

(00:00, 06:00, 12:00) (+5.8d)

12674 A1 4 Sept 2017 4.34±0.15 N13 W00 1.41/C5.2

(06:00, 012:00, 18:24) (-4.5d)

13055 A1 11 Jul 2022 4.29±0.08 S17 E06 1.13/C2.9

(06:00, 012:00, 18:24) (+1.0d)

13282 A1 18 Apr 2023 2.74±0.05 N12 W03 3.96/C7.1

(00:00, 06:00, 12:00) (-2.6d)

11967 B3 3 Feb 2014 7.96±0.15 S13 W00 75.03/M6.6

(00:00, 06:00, 12:00) (-3.3d)

12192 B3 22 Oct 2014 13.82±0.38 S14 W10 202.44/X3.1

(00:00, 12:00, 23:48) (+1.9d)

12371 B3 20 Jun 2015 5.91±0.37 N13 E14 21.81/M7.9

(00:00, 06:00, 12:00) (+4.8d)

12673 B3 5 Sept 2017 4.27±0.04 S08 W17 206.87/X9.3

(11:00, 12:00, 13:00) (+1.0d)

1

1Positive(negative) delay in days denotes the time interval between the end (beginning)
of the observations and the maximum flare.

and GLE-events registered by neuron monitors are predominantly associated

with B2 and B3-class ARs (Abramenko, 2021; Suleymanova, Miroshnichenko,

and Abramenko, 2024).

Flaring productivity of an AR was quantified here with the flare index (FI,

Abramenko (2005b)), which was derived by summing the GOES-class of all

flares observed in an AR during its passage across the solar disk, τ , and then

normalizing the total by τ . Further scaling was applied so that an AR with one

C1.0 (X1.0) flare per day has the flare index FI=1.0 (100).

The dissimilarity between the A1-class and B3-class ARs in flaring activity

is demonstrated in the last column of Table 1, where the flare index, FI, the

strongest flare launched by an AR during its passage across the solar disk,

and the time delay between the strongest flare and the observation interval

boundary are listed against the AR class. The flare index indicates that the flare

productivity of the B3-class ARs is approximately by two orders of magnitude

higher than that of the A1-class ARs.

Thus, if any difference exists in the correlation functions, it should be revealed

when comparing the A1- and B3-class ARs.
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Correlation Functions of Solar Active Regions

Figure 1. SDO/HMI magnetograms of four regular ARs (MMC-class A1). All magnetograms
are of the same spatial scale, and the horizontal dimension of the AR 11734 panel is 228
Mm (629 pixels). The magnetograms are scaled from -800 Mx·cm−2 (black) to 800 Mx·cm−2

(white). East is to the left, North is to the top. The solar equator is parallel to the horizontal
border of each magnetogram.

Figure 2. SDO/HMI magnetograms of four irregular ARs (MMC-class B3). All magne-
tograms are of the same spatial scale, the E-W length of the AR 11967 is 239 Mm (659
pixels). Other notations are the same as in Figure 1.
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3. Correlation Functions

The correlation function, Cor(r), of a 2D array u(x) is defined as (Monin and
I’aglom, 1971):

Cor(r) = 〈(u(x+ r)− 〈u〉) · (u(x) − 〈u〉)〉, (1)

where r is a separation vector, and x ≡ (x, y) is the current point within the
field of view (FOV). Angle brackets denote averaging over the area. To compare
correlation functions of magnetograms with different areas, a normalization of
Cor(r) by the variance of the array, Cor(0), was performed. Let us denote the
normalized correlation function as C(r):

C(r) = Cor(r)/Cor(0). (2)

For any 2D data, this function diminished from 1.0 (at r = 0) as the spatial
lag r increases. Here we will focus on C(r) and, for simplicity, will refer to this
function as correlation function, omitting the descriptor “normalized”.

Note that a white noise process has a correlation function zero for all r except
for r = 0 when C(r) = 1, which implies that the process is completely uncor-
related. On the contrary, an array of constant values exhibits the correlation
function equal to unity for all lags r. In between these two asymptotic cases, the
entire variety of physical processes in nature display generally diminishing (or
waving) correlation functions allowing us to infer some information about the
underlying process.

For each chosen AR we selected three magnetograms, the exact time of the
magnetograms is shown in Table 1. Predominantly, the magnetograms were
separated by a six-hour interval, except for the very fast varying AR 12673
and very slow evolving AR 12192. The correlation function for a given AR was
calculated as the average of three correlation functions (Figure 3). While the
correlation functions for regular ARs (green curves) are very similar and close to
each other, those calculated for irregular ARs (red curves), exhibit broad spread
and rather a unique behaviour. Apart from the above qualitative differences,
we do not observe any systematic difference in C(r) between A1-class and B3-
class ARs as the red and green curves are mixed. It is, therefore, reasonable
to apply analytical fits to the C(r), in particular, power law and exponential
approximations.

The power law approximation was performed utilizing a function

y = a · xα, (3)

while the exponential approximation was performed using common logarithm:

y = b · 10βx. (4)

Here, x is the spatial scale, r, and y is the model function. We used the same
scale range, ∆r, for both approximations. The broadest scale range that the data
allowed us to adopt was ∆r = 1− 36 Mm, since on large scales C(r) for NOAA
AR 12673 becomes negative and the logarithm operation failed.

SOLA: ms4.tex; 11 April 2024; 1:12; p. 6
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Figure 3. Correlation functions for 8 ARs plotted in the double linear axes.

A linear regression was calculated for each AR for both approximations. The
results for regular ARs (class A1) are presented in Figure 4, and for irregular ARs
(B3-class) in Figure 5. The power law approximation results are shown in the
left columns of the figures and the results of the exponential approximations are
plotted in the right column of the figures. For the power law approximation (Eq
3), the best linear fit between lg(r) and lg(C(r)) was derived. For the exponential
approximation (Eq 4), the same was done between r and lg(C(r)). The IDL
procedure LINFIT was used, which allows us to derive also the sum of squared
errors, χ2, between the observed lg(C(ri)) and approximated Yi ≡ A0 + A1xi.
For the power law fit, the later expression is:

Yi = lg(a) + α · lg(ri), (5)

while the equivalent expression for the exponential fit is:

Yi = lg(b) + β · ri. (6)

The LINFIT procedure also provides one-sigma errors of the linear fit parame-
ters, which we denote as σ(lg(a)), σ(α), σ(lg(b)), σ(β)). Parameters of the power
law and exponential fits are listed in Tables 2 and 3, respectively.

Comparison of the left and right columns in Figures 4 and 5 shows that the
power law failed to approximate the observed correlation functions, whereas the
exponential fit appears to be well compatible with data withing the linear range.
The power law performed equally poor for both A1- and B3-class ARs, while the
exponential fit performed somewhat better for A1-class ARs, where the observed
linear range extends further to toward larger r and beyond the vertical dotted
line at 36 Mm. The last columns in Tables 2 and 3 further confirm that the
goodness of the exponential fit is better as soon as the χ2 fitting errors are by

SOLA: ms4.tex; 11 April 2024; 1:12; p. 7
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Figure 4. Correlation functions of four regular ARs and their approximations (dashed lines).
Left - power law approximations (Equation 3) plotted in the double-logarithmic coordinates.
Right - exponential approximations (Equation 4) plotted in the linear-logarithmic coordinates.
The best linear fit (dashed lines) in each plot was calculated within 1− 36 Mm range marked
by the dotted vertical segments.
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Figure 5. Correlation functions of four irregular ARs and their approximations. Notations
are the same is in Figure 4.
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Table 2. Parameters of the power law fit for all ARs

NOAA MMC-class lg(a) σ(lg(a)) α σ(α) χ2

11734 A1 2.242 0.049 -0.671 0.040 0.950

12674 A1 2.258 0.040 -0.712 0.033 0.649

13055 A1 1.798 0.033 -0.544 0.027 0.423

13282 A1 2.673 0.049 -0.846 0.040 0.948

11967 B3 5.086 0.104 -1.214 0.085 4.289

12192 B3 1.360 0.020 -0.322 0.016 0.154

12371 B3 2.639 0.055 -0.777 0.045 1.200

12673 B3 3.950 0.130 -1.219 0.107 6.704

Table 3. Parameters of the exponential fit for all ARs

NOAA MMC-class lg(b) σ(lg(b)) β σ(β) χ2

11734 A1 0.0501 0.00491 -0.0259 0.00023 0.0260

12674 A1 0.0136 0.00796 -0.0263 0.00038 0.0686

13055 A1 0.00033 0.00172 -0.0204 8e-05 0.0032

13282 A1 0.0254 0.00801 -0.0314 0.00038 0.0695

11967 B3 0.188 0.0182 -0.0482 0.00086 0.361

12192 B3 -0.0166 0.00158 -0.0121 7e-05 0.0027

12371 B3 0.0702 0.00645 -0.0300 0.00031 0.0452

12673 B3 0.0643 0.0543 -0.478 0.0026 3.194

the order of magnitude lower than those for the power law. The only exception

is the extremely complex NOAA AR 12673, where the exponential law fitting

errors are only half of those of the power law fit.

The superior performance of the exponential fit is further illustrated in Fig-

ure 6. The heavy-tailed power law (blue) does not fit the observed correlation

function (black). The exponential approximation, while being a good fit at the

scales below 50 Mm, only slightly overestimates the observed correlation on

larger spatial scales. Moreover, as it follows from Figure 3, in some cases (e.g.,

strong δ-structure in NOAA AR 12673) magnetic correlation functions can show

negative values, indicating anti-correlation on large scales. This effect might be

caused by the close proximity of opposite polarity magnetic field.

Based on these results and following Bak, Tang, and Wiesenfeld (1987) and

Watkins et al. (2016), we may conclude that the photospheric magnetic field is

not in the state of SOC, as soon as their correlation function does not obey the

power law. On the other hand, Bak and Chen (1989) and Watkins et al. (2016)

state that ”Fractals in nature originate from self-organized critical dynamical

processes”. So, it would be interesting to explore the fractal properties of the

investigated ARs.
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Figure 6. An example of two approximations plotted for NOAA AR 12192 in double-linear
coordinates. The vertical dotted line segments mark the region where the approximations were
applied.

4. Fractal Properties of the Magnetic Field in the ARs

Fractal properties of various objects in nature have been a subject of inter-

est since the famous publication by Mandelbrot (1983). Generally, a fractal

(monofractal), as a self-similar object, may be characterized by one scalar pa-

rameter - a fractal dimension (see, e.g., Feder (1988)). In nature we deal with

multifractals, which are superpositions of monofractals. In this case, a single

scalar parameter is not sufficient to describe such a system, and a spectrum of

multifractality was introduced. In solar physics, two ways to explore multifrac-

tals were suggested. A multifractality spectrum may be calculated from Hölder

exponent and Hausdorff dimension as proposed by McAteer, Gallagher, and

Ireland (2005); McAteer et al. (2007); Conlon et al. (2008); McAteer, Gallagher,

and Conlon (2010). Another way is based on the structure functions analysis

(Monin and I’aglom, 1971; Frisch, 1995) that was introduced in Abramenko

et al. (2002) and further elaborated in Abramenko (2005a); Abramenko and

Yurchyshyn (2010). Here we will use the latter approach.

Structure functions were first introduced by Kolmogorov (1941), and they are

defined as statistical moments of field increments (see, e.g., Monin and I’aglom

SOLA: ms4.tex; 11 April 2024; 1:12; p. 11
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Figure 7. Flatness functions calculated by Eqs 7, 8 for regular (left) and irregular (right)
ARs. The power law corresponding to the average slope of the flatness functions of 4 ARs is
shown with a black line segment in each frame.

(1971)):

Sq(r) = 〈|u(x+ r)− u(x)|q〉, (7)

where x is a current pixel on a magnetogram, r is a separation vector between
any two points used to measure the increment, and q is the order of a statistical
moment (a real number). Angular brackets denote averaging over the area. To
derive the spectrum of multifractality, we calculated the ratio of the sixth mo-
ment to the cube of the second moment, called a flatness function F (r) (Frisch,
1995; Abramenko, 2005a; Abramenko and Yurchyshyn, 2010):

F (r) = S6(r)/(S2(r))
3 ∼ r−κ. (8)

In the case of a monofractal, the flatness function does not depend on scale (it is
flat). On the contrary, for multifractals, F (r) grows (approximately as a power
law) when the scale decreases (Frisch, 1995; Abramenko, 2005a). The slope of
the flatness function, κ, determined within the range of the growth, called the
flatness function exponent, characterizes the degree of multifractality.

We calculated flatness functions for all ARs using the algorithm described
in Abramenko (2005a); Abramenko and Yurchyshyn (2010). Figure 7 shows the
result: for A1-class (left panels) and B3-class (right panels) ARs. On scales below
approximately 30-50 Mm, a persistent increase of F (r) with the scale decrease is
observed for all ARs of both classes. Such a quasi-linear increase in the double-
logarithmic plot implies a power law behavior and power law approximations
were calculated for each AR over various scale ranges. Table 4 shows the results
of the power law fitting. As it was shown in Abramenko and Yurchyshyn (2010),
the index κ usually varies with the scale range due to individual properties of an
AR. Here we estimated the magnitude of κ from the broadest range (unique for
all ARs, columns 3 and 4 in Table 4), as well as for the narrow range, individual
for each AR (columns 5 and 6). For the most complex AR NOAA 12673 we
explored two narrow ranges, see the additional bottom line in Table 4.) The

SOLA: ms4.tex; 11 April 2024; 1:12; p. 12
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Table 4. Parameters of the fitting of the flatness functions for all ARs

NOAA MMC-class Broad range, Mm κ Narrow range, Mm κ

11734 A1 0.4 - 29 -0.289 5.6 - 19 -0.276

12674 A1 0.4 - 29 -0.301 1.1 - 19 -0.272

13055 A1 0.4 - 29 -0.542 0.7 - 5.6 -0.386

13282 A1 0.4 - 29 -0.382 5.6 - 19 -0.478

11967 B3 0.4 - 29 -1.083 0.4 - 17 -0.842

12192 B3 0.4 - 29 -0.557 0.4 - 6.3 -1.381

12371 B3 0.4 - 29 -0.737 1.9 - 29 -0.732

12673 B3 0.4 - 29 -1.097 0.4 - 5.2 -0.449

12673 3.7 - 22 -1.554

average index κ was found to be -0.37±0.10 from eight estimates of the A1-class
ARs, and much higher index of κ = −0.94±0.36 was found for (nine estimates
of) the B3-class ARs. The indices and the power law segments are shown in
Figure 7.

We thus confirmed that both types of ARs, simple bipolar A1-class ARs and
vary complex multipolar B3-class ARs, display the property of multifractality,
which is more pronounced for complex ARs. In general, this conclusion is in
a good agreement with previous studies by Abramenko (2005a); McAteer et

al. (2007); McAteer, Gallagher, and Conlon (2010); Abramenko and Yurchyshyn
(2010). The aim of this test was to confirm that the studied ARs, being observed
with another instrument, also exhibit properties of multifractality.

5. Concluding Remarks

We explored properties of the radial component of photospheric magnetic fields,
Br, in ARs. The analysis was performed for two very different types of ARs:
i) simple bipolar magnetic structures with regular orientation (MMC-class A1)
and ii) very complex multipolar ARs (MMC-class B3). We calculated spatial
correlation functions and their analytical approximation which showed that the
exponential approximation, determined in the scale range of 1-36 Mm is the best
fit for the correlation functions of both types ARs, while the power law has failed
to approximate the observed correlation functions. Additional investigation of
fractal properties of the same data revealed all studied ARs exhibit multifractal
property, although they are more pronounced in case of the complex B3-class
ARs.

Correlation functions are not a widely used tool for investigating spatial
structures in solar physics mainly because it requires high-resolution and high
accuracy measurements of photospheric magnetic fields acquired over large areas,
as well significant computational efforts. Meanwhile, according to Aschwanden
et al. (2016); Watkins et al. (2016); McAteer et al. (2016), correlation functions
can be used as a powerful diagnostic tool that may reveal dependence of data on
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various spatial separation lags. Their basic role in interpreting short- and long-
distance connections is discussed in details in McAteer et al. (2016). In particular,
white noise is a short-correlation array and it has a non-zero correlation only at
the zero lag. On the contrary, for a system capable of spontaneously producing
extremely large fluctuations, the correlations must be large for large lags. This
property is usually referred to as SOC. That is why Watkins et al. (2016), based
on the classical SOC concept (Bak and Chen, 1989), argued that correlation
functions of SOC-systems must be power law functions rather than exponential
ones. Following Bak and Chen (1989), Watkins et al. (2016) further argued
that fractals are the result of the dynamical development of a system in the
state of SOC, in other words, fractality is a necessary consequence of the SOC
state. However, Aschwanden et al. (2018) defined SOC-systems as a subset of
systems with self-organization, and fractality is assumed to be the property of all
systems with self-organization and the state of SOC is not a necessary condition
for fractality.

Based on the above reasoning, our results allow us to conclude that photo-
spheric magnetic fields in solar ARs represent a self-organized system, which,
however, is not in the state of SOC. This conclusion does not depend on the
complexity of ARs. At the same time, these magnetic fields display multifrac-
tal properties, which leads us to conclude that fractality is an attribute of
self-organized systems as well and not only of systems with SOC.

Although the above considerations refer to general issues, they also closely
relate to the problems of AR origin. To date, it is undoubtedly established that
the magnetic field is an energy source and structural skeleton for non-stationary
processes in the solar atmosphere occurring on a wide range of spatial and tem-
poral scales spanning from nano-flares to extremely large coronal mass ejections.
The SOC state has been confirmed for temporal processes in the corona (see,
e.g., Aschwanden et al. (2016); McAteer et al. (2016) and references herein),
allowing us to suggest that the magnetic field in the corona is in the SOC state.
At the same time, the magnetic field is only self-organized in the photosphere.
A question arises then, how the critical state in the corona is achieved and how
is it connected to the observed self-organization in the photosphere? Ultimately,
this question leads to a problem of coupling between the photosphere and the
corona.
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